°æÈñ´ëÇб³ ½Ä¹°±â´ÉüÀ¯ÀüÇÐ ½ÇÇè½Ç

»çÀÌÆ® ¸Ê ã¾Æ¿À½Ã´Â ±æ ¿¬¶ôó ¾È³»

 

±³¼ö´Ô ÇÁ·ÎÇÊ ¿¬±¸ºÐ¾ß ¼Ò°³ ¹ßÇ¥³í¹® ½ÇÇè½Ç ±¸¼º¿ø °Ô½ÃÆÇ °ü·Ã»çÀÌÆ®

 

 

> ¹ßÇ¥³í¹®


View Article
AUTHOR
  Jeon J-S, Lee S, Jung K-H, Jun S-H, Jeong D-H, Lee J-W, Kim C, Jang S, Lee S-Y, Yang K, Nam J, An K, Han M-J, Sung R-J, Choi H-S, Yu J-H, Choi J-H, Cho S-Y, Cha S-S, Kim S-I, An G. (2000)
TITLE   T-DNA insertional mutagenesis for functional genomics in rice.
JOURNAL   Plant Journal, 22, 561-570.
File
   T_DNA_Tagging(2000).pdf (1.06 MB) Download : 655
  The Abstract Of The Paper
We have produced 22 090 primary transgenic rice plants that carry a T-DNA insertion, which has resulted in 18 358 fertile lines. Genomic DNA gel-blot and PCR analyses have shown that approximately 65% of the population contains more than one copy of the inserted T-DNA. Hygromycin resistance tests revealed that transgenic plants contain an average of 1.4 loci of T-DNA inserts. Therefore, it can be estimated that approximately 25 700 taggings have been generated. The binary vector used in the insertion contained the promoterless beta-glucuronidase (GUS) reporter gene with an intron and multiple splicing donors and acceptors immediately next to the right border. Therefore, this gene trap vector is able to detect a gene fusion between GUS and an endogenous gene, which is tagged by T-DNA. Histochemical GUS assays were carried out in the leaves and roots from 5353 lines, mature flowers from 7026 lines, and developing seeds from 1948 lines. The data revealed that 1.6-2.1% of tested organs were GUS-positive in the tested organs, and that their GUS expression patterns were organ- or tissue-specific or ubiquitous in all parts of the plant. The large population of T-DNA-tagged lines will be useful for identifying insertional mutants in various genes and for discovering new genes in rice.
 Prev   Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen.
  1970/01/01 
 Next   leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development.
  1970/01/01 


Copyright 1999-2024 Zeroboard / skin by daerew

 

Copyright 2004 (c) Plant Functional Genomics Lab. Department of Biological Sciences, Kyung Hee University
1, Sochen-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Korea. Zip code : 446-701 Tel : 82-31-201-3671
All rights reserved. The last homepage modified 10/22/2004 09:41:15.
- Counting status : visited today, visited yesterday, visited in sum.